Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Front Immunol ; 15: 1325171, 2024.
Article in English | MEDLINE | ID: mdl-38715598

ABSTRACT

Introduction: Muscle-specific kinase (MuSK)- myasthenia gravis (MG) is caused by pathogenic autoantibodies against MuSK that correlate with disease severity and are predominantly of the IgG4 subclass. The first-line treatment for MuSK-MG is general immunosuppression with corticosteroids, but the effect of treatment on IgG4 and MuSK IgG4 levels has not been studied. Methods: We analyzed the clinical data and sera from 52 MuSK-MG patients (45 female, 7 male, median age 49 (range 17-79) years) from Italy, the Netherlands, Greece and Belgium, and 43 AChR-MG patients (22 female, 21 male, median age 63 (range 2-82) years) from Italy, receiving different types of immunosuppression, and sera from 46 age- and sex-matched non-disease controls (with no diagnosed diseases, 38 female, 8 male, median age 51.5 (range 20-68) years) from the Netherlands. We analyzed the disease severity (assessed by MGFA or QMG score), and measured concentrations of MuSK IgG4, MuSK IgG, total IgG4 and total IgG in the sera by ELISA, RIA and nephelometry. Results: We observed that MuSK-MG patients showed a robust clinical improvement and reduction of MuSK IgG after therapy, and that MuSK IgG4 concentrations, but not total IgG4 concentrations, correlated with clinical severity. MuSK IgG and MuSK IgG4 concentrations were reduced after immunosuppression in 4/5 individuals with before-after data, but data from non-linked patient samples showed no difference. Total serum IgG4 levels were within the normal range, with IgG4 levels above threshold (1.35g/L) in 1/52 MuSK-MG, 2/43 AChR-MG patients and 1/45 non-disease controls. MuSK-MG patients improved within the first four years after disease onset, but no further clinical improvement or reduction of MuSK IgG4 were observed four years later, and only 14/52 (26.92%) patients in total, of which 13 (93.3%) received general immunosuppression, reached clinical remission. Discussion: We conclude that MuSK-MG patients improve clinically with general immunosuppression but may require further treatment to reach remission. Longitudinal testing of individual patients may be clinically more useful than single measurements of MuSK IgG4. No significant differences in the serum IgG4 concentrations and IgG4/IgG ratio between AChR- and MuSK-MG patients were found during follow-up. Further studies with larger patient and control cohorts are necessary to validate the findings.


Subject(s)
Autoantibodies , Immunoglobulin G , Myasthenia Gravis , Receptor Protein-Tyrosine Kinases , Receptors, Cholinergic , Humans , Myasthenia Gravis/immunology , Myasthenia Gravis/blood , Myasthenia Gravis/diagnosis , Male , Middle Aged , Female , Adult , Aged , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Cholinergic/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Retrospective Studies , Young Adult , Adolescent , Autoantibodies/blood , Autoantibodies/immunology , Aged, 80 and over , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Severity of Illness Index , Child
2.
Front Neurol ; 14: 1111063, 2023.
Article in English | MEDLINE | ID: mdl-37305746

ABSTRACT

Background: Anti-GAD65 autoantibodies (GAD65-Abs) may occur in patients with epilepsy and other neurological disorders, but the clinical significance is not clear-cut. Whereas high levels of GAD65-Abs are considered pathogenic in neuropsychiatric disorders, low or moderate levels are only considered as mere bystanders in, e.g., diabetes mellitus type 1 (DM1). The value of cell-based assays (CBA) and immunohistochemistry (IHC) for GAD65-Abs detection has not been clearly evaluated in this context. Objective: To re-evaluate the assumption that high levels of GAD65-Abs are related to neuropsychiatric disorders and lower levels only to DM1 and to compare ELISA results with CBA and IHC to determine the additional value of these tests. Methods: 111 sera previously assessed for GAD65-Abs by ELISA in routine clinical practice were studied. Clinical indications for testing were, e.g., suspected autoimmune encephalitis or epilepsy (neuropsychiatric cohort; n = 71, 7 cases were initially tested positive for GAD65-Abs by ELISA), and DM1 or latent autoimmune diabetes in adults (DM1/LADA cohort (n = 40, all were initially tested positive)). Sera were re-tested for GAD65-Abs by ELISA, CBA, and IHC. Also, we examined the possible presence of GAD67-Abs by CBA and of other neuronal autoantibodies by IHC. Samples that showed IHC patterns different from GAD65 were further tested by selected CBAs. Results: ELISA retested GAD65-Abs level in patients with neuropsychiatric diseases was higher than in patients with DM1/LADA (only retested positive samples were compared; 6 vs. 38; median 47,092 U/mL vs. 581 U/mL; p = 0.02). GAD-Abs showed positive both by CBA and IHC only if antibody levels were above 10,000 U/mL, without a difference in prevalence between the studied cohorts. We found other neuronal antibodies in one patient with epilepsy (mGluR1-Abs, GAD-Abs negative), and in a patient with encephalitis, and two patients with LADA. Conclusion: GAD65-Abs levels are significantly higher in patients with neuropsychiatric disease than in patients with DM1/LADA, however, positivity in CBA and IHC only correlates with high levels of GAD65-Abs, and not with the underlying diseases.

3.
Neuromuscul Disord ; 33(5): 417-424, 2023 05.
Article in English | MEDLINE | ID: mdl-37037051

ABSTRACT

The aim of this study was to investigate the surgical and long-term neurological outcomes of patients with acetylcholine-receptor-antibody-associated myasthenia gravis (AChR-MG) who underwent robotic thymectomy (RATS). We retrospectively analyzed the clinical-pathological data of all patients with AChR-MG who underwent RATS using the DaVinci® Robotic System at the MUMC+ between April 2004 and December 2018. Follow-up data were collected from 60 referring Dutch hospitals. In total, 230 myasthenic patients including 76 patients with a thymoma (33.0%) were enrolled in this study. Mean follow-up time, procedure time and hospitalization were, respectively 65.7 ± 43.1 months, 111±52.5 min and 3.3 ± 2.2 days. Thymomatous patients had significantly more frequently and more severe complications than nonthymomatous patients (18.4% vs. 3.9%, p<0.001). Follow up data was available in 71.7% of the included patients. The Myasthenia Gravis Foundation of America postintervention score showed any kind of improvement of MG-symptoms after RATS in 82.4% of the patients. Complete stable remission (CSR) or pharmacological remission (PR) of MG was observed in 8.4% and 39.4% of the patients, respectively. Mean time till CSR/PR remission after thymectomy was 26.2 ± 29.2 months. No statistical difference was found in remission or improvement in MGFA scale between thymomatous and nonthymomatous patients. RATS is safe and feasible in patients with MG. The majority of the patients (82.4%) improved after thymectomy. CSR and PR were observed in 8.4% and 39.4% of the patients, respectively, with a mean of 26.2 months after thymectomy. Thymomatous patients had more frequently and more severe complications compared to nonthymomatous patients.


Subject(s)
Myasthenia Gravis , Robotic Surgical Procedures , Thymus Neoplasms , Humans , Thymectomy , Acetylcholine , Treatment Outcome , Robotic Surgical Procedures/adverse effects , Retrospective Studies , Myasthenia Gravis/surgery , Myasthenia Gravis/complications , Thymus Neoplasms/complications , Receptors, Cholinergic , Autoantibodies
4.
Acta Neuropathol Commun ; 10(1): 154, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307868

ABSTRACT

Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disorder of the neuromuscular junction. A small subset of patients (<10%) with MG, have autoantibodies targeting muscle-specific tyrosine kinase (MuSK). MuSK MG patients respond well to CD20-mediated B cell depletion therapy (BCDT); most achieve complete stable remission. However, relapse often occurs. To further understand the immunomechanisms underlying relapse, we studied autoantibody-producing B cells over the course of BCDT. We developed a fluorescently labeled antigen to enrich for MuSK-specific B cells, which was validated with a novel Nalm6 cell line engineered to express a human MuSK-specific B cell receptor. B cells (≅ 2.6 million) from 12 different samples collected from nine MuSK MG patients were screened for MuSK specificity. We successfully isolated two MuSK-specific IgG4 subclass-expressing plasmablasts from two of these patients, who were experiencing a relapse after a BCDT-induced remission. Human recombinant MuSK mAbs were then generated to validate binding specificity and characterize their molecular properties. Both mAbs were strong MuSK binders, they recognized the Ig1-like domain of MuSK, and showed pathogenic capacity when tested in an acetylcholine receptor (AChR) clustering assay. The presence of persistent clonal relatives of these MuSK-specific B cell clones was investigated through B cell receptor repertoire tracing of 63,977 unique clones derived from longitudinal samples collected from these two patients. Clonal variants were detected at multiple timepoints spanning more than five years and reemerged after BCDT-mediated remission, predating disease relapse by several months. These findings demonstrate that a reservoir of rare pathogenic MuSK autoantibody-expressing B cell clones survive BCDT and reemerge into circulation prior to manifestation of clinical relapse. Overall, this study provides both a mechanistic understanding of MuSK MG relapse and a valuable candidate biomarker for relapse prediction.


Subject(s)
Myasthenia Gravis , Receptor Protein-Tyrosine Kinases , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/therapeutic use , Neoplasm Recurrence, Local , Myasthenia Gravis/drug therapy , Autoantibodies , Antibodies, Monoclonal , Clone Cells/metabolism , Clone Cells/pathology , Receptors, Antigen, B-Cell/therapeutic use
5.
Biomed Pharmacother ; 152: 113240, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35689862

ABSTRACT

The protection mediated by the bioactive sphingolipid sphingosine-1-phosphate (S1P) declines during Alzheimer's disease (AD) progression, especially in patients carrying the apolipoprotein E ε4 (APOE4) isoform. The drug FTY720 mimics S1P bioactivity, but its efficacy in treating AD is unclear. Two doses of FTY720 (0.1 mg / kg and 0.5 mg / kg daily) were given by oral gavage for 15 weeks to transgenic mouse models of familial AD carrying human apolipoprotein E (APOE) APOE3 (E3FAD) or APOE4 (E4FAD). After 12 weeks of treatment, animals were subjected to behavioral tests for memory, locomotion, and anxiety. Blood was withdrawn at different time points and brains were collected for sphingolipids analysis by mass spectrometry, gene expression by RT-PCR and Aß quantification by ELISA. We discovered that low levels of S1P in the plasma is associated with a higher probability of failing the memory test and that FTY720 prevents memory impairments in E4FAD. The beneficial effect of FTY720 was induced by a shift of the sphingolipid metabolism in the brain towards a lower production of toxic metabolites, like ceramide d18:1/16:0 and d18:1/22:0, and reduction of amyloid-ß burden and inflammation. In conclusion, we provide further evidence of the druggability of the sphingolipid system in AD.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/prevention & control , Animals , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E4/therapeutic use , Brain/metabolism , Ceramides/metabolism , Disease Models, Animal , Fingolimod Hydrochloride/metabolism , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Humans , Memory Disorders/drug therapy , Memory Disorders/metabolism , Memory Disorders/prevention & control , Mice , Sphingolipids/metabolism
6.
Autoimmun Rev ; 21(7): 103104, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35452851

ABSTRACT

The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.


Subject(s)
Myasthenia Gravis , Receptors, Cholinergic , Autoantibodies , Humans , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Myasthenia Gravis/drug therapy , Receptors, Cholinergic/therapeutic use
7.
Article in English | MEDLINE | ID: mdl-35450924

ABSTRACT

OBJECTIVE: To describe the unique case history of a patient with mGluR1 antibodies, with mainly limbic and without cerebellar symptoms. METHODS: A 50-year-old woman initially presented with focal seizures with epigastric rising and déjà-vu sensations, next to cognitive complaints, and musical auditory hallucinations. MRI, EEG, and neuronal autoantibody tests were performed. RESULTS: EEG findings showed slow and sharp activity (sharp waves and sharp-wave-slow-wave complex) in the left temporal lobe. A test for autoantibodies was negative initially. Because of persistent symptoms, serum and CSF were tested 4 years later and found positive for mGluR1 antibodies. Treatment started with monthly IV immunoglobulins and azathioprine that was replaced by mycophenolate mofetil later. Especially cognitive symptoms and hallucinations did not respond well to the treatment. During treatment, mGluR1 antibodies remained present in CSF. DISCUSSION: Whereas cerebellar symptoms are present in 97% of mGluR1-positive cases, our patient presented without ataxia. Therefore, we suggest that the clinical presentation of patients with mGluR1 antibodies is probably more diverse than previously described. Testing for mGluR1 antibodies should be considered in patients with limbic encephalitis and epilepsy, especially when negative for more common antibodies.


Subject(s)
Encephalitis , Epilepsy , Autoantibodies , Encephalitis/diagnosis , Epilepsy/etiology , Female , Hashimoto Disease , Humans , Middle Aged , Receptors, Metabotropic Glutamate
8.
Front Immunol ; 13: 834342, 2022.
Article in English | MEDLINE | ID: mdl-35401530

ABSTRACT

Organ-specific autoimmunity is often characterized by autoantibodies targeting proteins expressed in the affected tissue. A subgroup of autoimmunopathies has recently emerged that is characterized by predominant autoantibodies of the IgG4 subclass (IgG4-autoimmune diseases; IgG4-AID). This group includes pemphigus vulgaris, thrombotic thrombocytopenic purpura, subtypes of autoimmune encephalitis, inflammatory neuropathies, myasthenia gravis and membranous nephropathy. Although the associated autoantibodies target specific antigens in different organs and thus cause diverse syndromes and diseases, they share surprising similarities in genetic predisposition, disease mechanisms, clinical course and response to therapies. IgG4-AID appear to be distinct from another group of rare immune diseases associated with IgG4, which are the IgG4-related diseases (IgG4-RLD), such as IgG4-related which have distinct clinical and serological properties and are not characterized by antigen-specific IgG4. Importantly, IgG4-AID differ significantly from diseases associated with IgG1 autoantibodies targeting the same organ. This may be due to the unique functional characteristics of IgG4 autoantibodies (e.g. anti-inflammatory and functionally monovalent) that affect how the antibodies cause disease, and the differential response to immunotherapies of the IgG4 producing B cells/plasmablasts. These clinical and pathophysiological clues give important insight in the immunopathogenesis of IgG4-AID. Understanding IgG4 immunobiology is a key step towards the development of novel, IgG4 specific treatments. In this review we therefore summarize current knowledge on IgG4 regulation, the relevance of class switching in the context of health and disease, describe the cellular mechanisms involved in IgG4 production and provide an overview of treatment responses in IgG4-AID.


Subject(s)
Autoantibodies , Myasthenia Gravis , B-Lymphocytes , Humans , Immunoglobulin Class Switching , Immunoglobulin G , Immunotherapy
9.
Front Aging Neurosci ; 13: 765252, 2021.
Article in English | MEDLINE | ID: mdl-34776936

ABSTRACT

Apolipoprotein ε4 (APOE)4 is a strong risk factor for the development of Alzheimer's disease (AD) and aberrant sphingolipid levels have been implicated in AD. We tested the hypothesis that the APOE4 genotype affects brain sphingolipid levels in AD. Seven ceramides and sphingosine-1-phosphate (S1P) were quantified by LC-MSMS in hippocampus, cortex, cerebellum, and plasma of <3 months and >5 months old human APOE3 and APOE4-targeted replacement mice with or without the familial AD (FAD) background of both sexes (145 animals). APOE4 mice had higher Cer(d18:1/24:0) levels in the cortex (1.7-fold, p = 0.002) than APOE3 mice. Mice with AD background showed higher levels of Cer(d18:1/24:1) in the cortex than mice without (1.4-fold, p = 0.003). S1P levels were higher in all three brain regions of older mice than of young mice (1.7-1.8-fold, all p ≤ 0.001). In female mice, S1P levels in hippocampus (r = -0.54 [-0.70, -0.35], p < 0.001) and in cortex correlated with those in plasma (r = -0.53 [-0.71, -0.32], p < 0.001). Ceramide levels were lower in the hippocampus (3.7-10.7-fold, all p < 0.001), but higher in the cortex (2.3-12.8-fold, p < 0.001) of female than male mice. In cerebellum and plasma, sex effects on individual ceramides depended on acyl chain length (9.5-fold lower to 11.5-fold higher, p ≤ 0.001). In conclusion, sex is a stronger determinant of brain ceramide levels in mice than APOE genotype, AD background, or age. Whether these differences impact AD neuropathology in men and women remains to be investigated.

10.
Schizophr Res ; 228: 462-471, 2021 02.
Article in English | MEDLINE | ID: mdl-33581586

ABSTRACT

The etiology of psychotic disorders is still unknown, but in a subgroup of patients symptoms might be caused by an autoimmune reaction. In this study, we tested patterns of autoimmune reactivity against potentially novel hippocampal antigens. Serum of a cohort of 621 individuals with psychotic disorders and 257 controls were first tested for reactivity on neuropil of rat brain sections. Brain reactive sera (67 diseased, 27 healthy) were further tested for antibody binding to glutamic acid decarboxylase (GAD) isotype 65 and 67 by cell-based assay (CBA). A sub-cohort of 199 individuals with psychotic disorders and 152 controls was tested for the prevalence of anti-nuclear antibodies (ANA) on HEp2-substrate as well as for reactivity to double-stranded DNA, ribosomal P (RPP), and cardiolipin (CL). Incubation of rat brain with serum resulted in unidentified hippocampal binding patterns in both diseased and control groups. Upon screening with GAD CBA, one of these patterns was identified as GAD65 in one individual with schizophrenia and also in one healthy individual. Two diseased and two healthy individuals had low antibody levels targeting GAD67 by CBA. Antibody reactivity on HEp-2-substrate was increased in patients with schizoaffective disorder, but only in 3 patients did antibody testing hint at a possible diagnosis of systemic lupus erythematosus. Although reactivity of serum to intracellular antigens might be increased in patients with psychotic disorder, no specific targets could be identified. GAD antibodies are very rare and do not seem increased in serum of patients with psychotic disorders.


Subject(s)
Glutamate Decarboxylase , Psychotic Disorders , Antigens, Nuclear , Autoantibodies , Hippocampus , Humans , Prevalence , Psychotic Disorders/epidemiology
11.
Transl Psychiatry ; 10(1): 404, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230123

ABSTRACT

Neuronal surface autoantibodies (NSAbs) against various antigens cause autoimmune encephalitis. Some of these antigens are also involved in the pathology of depression and anxiety. To study whether NSAbs are more common in plasma of individuals with depression and anxiety than in controls, and to investigate if NSAbs correlate with disease status, plasma samples of 819 individuals with a current diagnosis of depression and/or anxiety, 920 in remission and 492 individuals without these disorders were included in this study. Samples were tested by a combination of immunohistochemistry (IHC), staining on live rat hippocampus neurons and cell-based assay (CBA). By IHC, 50 (2.2%) samples showed immunoreactivity to rat brain tissue, with no significant differences between the aforementioned groups (22/819 vs 18/920 vs 11/492, P > 0.99). In addition, eight IHC positive samples were positive for NSAbs on live neurons (7/819 vs 0/920 vs 1/492, P = 0.006). The IHC-staining patterns of these eight samples were atypical for autoimmune encephalitis and accordingly, they tested negative for known NSAbs by CBA. No obvious difference in the clinical characteristics between individuals with or without NSAbs was observed. In conclusion, novel NSAbs were rare but predominately found in patients with current anxiety or depression indicating they might affect mental health in a small group of patients.


Subject(s)
Encephalitis , Hashimoto Disease , Animals , Anxiety , Autoantibodies , Depression , Humans , Rats
12.
Front Immunol ; 11: 1358, 2020.
Article in English | MEDLINE | ID: mdl-32733453

ABSTRACT

Hashimoto's encephalopathy is an encephalitis of presumed autoimmune origin characterized by the presence of autoantibodies against thyroid proteins. We present a case of a young patient with pre-existing Hashimoto's thyroiditis and progressive cognitive complaints, absence-like episodes, and sporadic bilateral epileptiform frontal and frontotemporal activity. No abnormalities were observed during the neurological examination and on MRI. Antibodies to thyroid peroxidase (TPO) were elevated and remained positive while the symptoms were present. Levothyroxine and methylprednisolone did not ameliorate the complaints. Subsequent treatment with high-dose intravenous immunoglobulins (IVIG) led to improved cognitive functions and to the disappearance of the absence-like-episodes. Patient's serum, but not CSF, gave a characteristic IgG-specific hippocampal pattern in rat brain immunohistochemistry; this immunoreactivity was maintained after specific and complete depletion of TPO antibodies. Serum IgG bound to primary neurons in cell culture, likely targeting a yet unidentified neuronal surface antigen. The clinical response to IVIG suggests but does not prove, that the circulating novel autoantibodies may induce the encephalopathy. It would be of interest to investigate more patients with Hashimoto's encephalopathy for the presence of neuronal surface autoantibodies, to define their role in the disease and their target antigen(s).


Subject(s)
Autoantibodies/immunology , Encephalitis/etiology , Hashimoto Disease/etiology , Immunoglobulin G/immunology , Neurons/immunology , Adolescent , Autoantigens/immunology , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Autoimmunity , Biomarkers , Electroencephalography , Encephalitis/diagnosis , Encephalitis/metabolism , Fluorescent Antibody Technique , Hashimoto Disease/diagnosis , Hashimoto Disease/metabolism , Humans , Immunohistochemistry , Male , Neurons/metabolism
14.
Autoimmun Rev ; 18(9): 102348, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31323365

ABSTRACT

Psychotic disorders are debilitating mental illnesses associated with abnormalities in various neurotransmitter systems. The development of disease-modifing therapies has been hampered by the mostly unknown etiologies and pathophysiologies. Autoantibodies against several neuronal antigens are responsible for autoimmune encephalitis. These autoantibodies disrupt neurotransmission within the brain, resulting in a wide range of psychiatric and neurologic manifestations, including psychosis. The overlap of symptoms of autoimmune encephalitis with psychotic disorders raised the question as to whether autoantibodies against a number of receptors, ion channel and associated proteins could ultimately be responsible for some forms of psychosis. Here we review our current knowledge, on antibody mediated autoimmunity in psychotic disorders, the different diagnostic methods and their limitations, as well as on varying therapeutic approaches targeting the immune system.


Subject(s)
Autoimmunity/physiology , Immunologic Tests/trends , Immunotherapy/trends , Psychotic Disorders/diagnosis , Psychotic Disorders/immunology , Psychotic Disorders/therapy , Autoantibodies/analysis , Autoantibodies/blood , Autoantibodies/immunology , Brain/physiology , Encephalitis/diagnosis , Encephalitis/immunology , Encephalitis/therapy , Hashimoto Disease/diagnosis , Hashimoto Disease/immunology , Hashimoto Disease/therapy , Humans , Immune System/physiology , Immunologic Tests/methods , Immunotherapy/methods , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Neurons/immunology , Neurons/pathology
15.
JCI Insight ; 4(12)2019 06 20.
Article in English | MEDLINE | ID: mdl-31217355

ABSTRACT

Myasthenia gravis (MG) is a chronic autoimmune disorder characterized by muscle weakness and caused by pathogenic autoantibodies that bind to membrane proteins at the neuromuscular junction. Most patients have autoantibodies against the acetylcholine receptor (AChR), but a subset of patients have autoantibodies against muscle-specific tyrosine kinase (MuSK) instead. MuSK is an essential component of the pathway responsible for synaptic differentiation, which is activated by nerve-released agrin. Through binding MuSK, serum-derived autoantibodies inhibit agrin-induced MuSK autophosphorylation, impair clustering of AChRs, and block neuromuscular transmission. We sought to establish individual MuSK autoantibody clones so that the autoimmune mechanisms could be better understood. We isolated MuSK autoantibody-expressing B cells from 6 MuSK MG patients using a fluorescently tagged MuSK antigen multimer, then generated a panel of human monoclonal autoantibodies (mAbs) from these cells. Here we focused on 3 highly specific mAbs that bound quantitatively to MuSK in solution, to MuSK-expressing HEK cells, and at mouse neuromuscular junctions, where they colocalized with AChRs. These 3 IgG isotype mAbs (2 IgG4 and 1 IgG3 subclass) recognized the Ig-like domain 2 of MuSK. The mAbs inhibited AChR clustering, but intriguingly, they enhanced rather than inhibited MuSK phosphorylation, which suggests an alternative mechanism for inhibiting AChR clustering.


Subject(s)
Antibodies, Monoclonal/immunology , Autoantibodies/immunology , Myasthenia Gravis/immunology , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Cholinergic/immunology , Adult , Epitope Mapping , Female , HEK293 Cells , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Myasthenia Gravis/pathology , Recombinant Proteins/immunology
16.
Autoimmun Rev ; 18(1): 50-55, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30414949

ABSTRACT

Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction. Most patients have pathogenic autoantibodies against the acetylcholine receptor (AChR). In the last years a novel subpopulation of MG patients has been described that harbors antibodies against low-density lipoprotein receptor-related protein 4 (Lrp4), another postsynaptic neuromuscular antigen. In early-onset AChR MG (EOMG), the thymus plays an important role in immunopathogenesis, and early thymectomy is beneficial. It is still unknown if the thymus plays any role in Lrp4-MG. In this pilot study, we compared thymus samples from four patients with Lrp4-MG (one pre-treated with immunosuppressive drugs), four non-MG controls and five EOMG patients (not pretreated with immunosuppressive drugs). Immunohistochemistry of the Lrp4-MG thymi revealed normal architecture, with normal numbers and distribution of B-cells, lymphoid follicles and Hassall's corpuscles. Primary CD23+ lymphoid follicles were similarly infrequent in Lrp4-MG and control thymic sections. In none of the control or Lrp4-MG thymi did we find secondary follicles with CD10+ germinal centers. These were evident in 2 of the 5 EOMG thymi, where primary lymphoid follicles were also more frequent on average, thus showing considerable heterogeneity between patients. Even if characteristic pathological thymic changes were not observed in the Lrp4 subgroup, we cannot exclude a role for the thymus in Lrp4-MG pathogenesis, since one Lrp4-MG patient went into clinical remission after thymectomy alone (at one year follow-up) and one more improved after thymectomy in combination with immunosuppressive therapy.


Subject(s)
LDL-Receptor Related Proteins/immunology , Myasthenia Gravis/diagnosis , Thymus Gland/pathology , Adult , Female , Humans , Male , Myasthenia Gravis/immunology , Myasthenia Gravis/pathology
17.
Front Immunol ; 8: 752, 2017.
Article in English | MEDLINE | ID: mdl-28725222

ABSTRACT

Autoimmune diseases are affecting around 7.6-9.4% of the general population. A number of central nervous system disorders, including encephalitis and severe psychiatric disorders, have been demonstrated to associate with specific neuronal surface autoantibodies (NSAbs). It has become clear that specific autoantibodies targeting neuronal surface antigens and ion channels could cause severe mental disturbances. A number of studies have focused or are currently investigating the presence of autoantibodies in specific mental conditions such as schizophrenia and bipolar disorders. However, less is known about other conditions such as depression. Depression is a psychiatric disorder with complex etiology and pathogenesis. The diagnosis criteria of depression are largely based on symptoms but not on the origin of the disease. The question which arises is whether in a subgroup of patients with depression, the symptoms might be caused by autoantibodies targeting membrane-associated antigens. Here, we describe how autoantibodies targeting membrane proteins and ion channels cause pathological effects. We discuss the physiology of these antigens and their role in relation to depression. Finally, we summarize a number of studies detecting NSAbs with a special focus on cohorts that include depression diagnosis and/or show depressive symptoms.

18.
Sci Rep ; 7(1): 992, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28428630

ABSTRACT

Autoantibodies against ion channels are the cause of numerous neurologic autoimmune disorders. Frequently, such pathogenic autoantibodies have a restricted epitope-specificity. In such cases, competing antibody formats devoid of pathogenic effector functions (blocker antibodies) have the potential to treat disease by displacing autoantibodies from their target. Here, we have used a model of the neuromuscular autoimmune disease myasthenia gravis in rhesus monkeys (Macaca mulatta) to test the therapeutic potential of a new blocker antibody: MG was induced by passive transfer of pathogenic acetylcholine receptor-specific monoclonal antibody IgG1-637. The effect of the blocker antibody (IgG4Δhinge-637, the hinge-deleted IgG4 version of IgG1-637) was assessed using decrement measurements and single-fiber electromyography. Three daily doses of 1.7 mg/kg IgG1-637 (cumulative dose 5 mg/kg) induced impairment of neuromuscular transmission, as demonstrated by significantly increased jitter, synaptic transmission failures (blockings) and a decrease in the amplitude of the compound muscle action potentials during repeated stimulations (decrement), without showing overt symptoms of muscle weakness. Treatment with three daily doses of 10 mg/kg IgG4Δhinge-637 significantly reduced the IgG1-637-induced increase in jitter, blockings and decrement. Together, these results represent proof-of principle data for therapy of acetylcholine receptor-myasthenia gravis with a monovalent antibody format that blocks binding of pathogenic autoantibodies.


Subject(s)
Autoantibodies/metabolism , Immunoglobulin G/administration & dosage , Myasthenia Gravis/drug therapy , Receptors, Cholinergic/metabolism , Animals , CHO Cells , Cholinergic Antagonists , Cricetulus , Disease Models, Animal , Gene Expression Regulation/drug effects , HEK293 Cells , Hinge Exons , Humans , Immunoglobulin G/pharmacology , Macaca mulatta , Myasthenia Gravis/immunology , Myasthenia Gravis/metabolism , Synaptic Transmission/drug effects , Treatment Outcome
19.
Am J Pathol ; 186(10): 2559-68, 2016 10.
Article in English | MEDLINE | ID: mdl-27658713

ABSTRACT

Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies that target proteins at the neuromuscular junction, primarily the acetylcholine receptor (AChR) and the muscle-specific kinase. Because downstream of kinase 7 (Dok-7) is essential for the full activation of muscle-specific kinase and consequently for dense clustering of AChRs, we hypothesized that reduced levels of Dok-7 increase the susceptibility to passive transfer MG. To test this hypothesis, Dok-7 expression was reduced by transfecting shRNA-coding plasmids into the tibialis anterior muscle of adult rats by in vivo electroporation. Subclinical MG was subsequently induced with a low dose of anti-AChR monoclonal antibody 35. Neuromuscular transmission was significantly impaired in Dok-7-siRNA-electroporated legs compared with the contralateral control legs, which correlated with a reduction of AChR protein levels at the neuromuscular junction (approximately 25%) in Dok-7-siRNA-electroporated muscles, compared with contralateral control muscles. These results suggest that a reduced expression of Dok-7 may play a role in the susceptibility to passive transfer MG, by rendering AChR clusters less resistant to the autoantibody attack.


Subject(s)
Autoantibodies/immunology , Muscle Proteins/genetics , Myasthenia Gravis, Autoimmune, Experimental/genetics , Animals , Disease Models, Animal , Disease Susceptibility , Down-Regulation , Female , Gene Silencing , Genes, Reporter , HEK293 Cells , Humans , Muscle Proteins/metabolism , Muscle, Skeletal/immunology , Muscle, Skeletal/physiopathology , Myasthenia Gravis, Autoimmune, Experimental/immunology , Myasthenia Gravis, Autoimmune, Experimental/physiopathology , Neuromuscular Junction/immunology , Neuromuscular Junction/physiopathology , Rats , Rats, Inbred Lew , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Synaptic Transmission
20.
Antibodies (Basel) ; 5(2)2016 Apr 21.
Article in English | MEDLINE | ID: mdl-31557990

ABSTRACT

Little is known about the etiology of neuropsychiatric disorders. The identification of autoantibodies targeting the N-methyl-d-aspartate receptor (NMDA-R), which causes neurological and psychiatric symptoms, has reinvigorated the hypothesis that other patient subgroups may also suffer from an underlying autoimmune condition. In recent years, a wide range of neuropsychiatric diseases and autoantibodies targeting ion-channels or neuronal receptors including NMDA-R, voltage gated potassium channel complex (VGKC complex), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R), γ-aminobutyric acid receptor (GABA-R) and dopamine receptor (DR) were studied and conflicting reports have been published regarding the seroprevalence of these autoantibodies. A clear causative role of autoantibodies on psychiatric symptoms has as yet only been shown for the NMDA-R. Several other autoantibodies have been related to the presence of certain symptoms and antibody effector mechanisms have been proposed. However, extensive clinical studies with large multicenter efforts to standardize diagnostic procedures for autoimmune etiology and animal studies are needed to confirm the pathogenicity of these autoantibodies. In this review, we discuss the current knowledge of neuronal autoantibodies in the major neuropsychiatric disorders: psychotic, major depression, autism spectrum, obsessive-compulsive and attention-deficit/hyperactivity disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...